Toward Automatic Data Distribution
for Migrating Computations

Lei Pan
Jet Propulsion Laboratory
California Institute of
Technology
Pasadena, CA 91109, USA

lei.pan@jpl.nasa.gov

Jingling

University of New

ABSTRACT

Program parallelization requires mapping computationdatd to
processors. Navigational Programming (NavP), based oprthe
ciple of migrating computations, offers a different apmtodhan
the conventional solutions that use a SPMD model. The thieee m
jor steps are: (1) Distribute the data, based on the accétssmsa
within the sequential code; (2) Insert navigational comdsafi.e.,
hop statements) in the sequential code for the computationlto fo
low the data; and (3) Cut the sequential migrating threadfarrd
the multiple resulting threads into a mobile pipeline. Théaper
focuses on data distribution. We introduce M@vigational Trace
Graph(NTG), a mathematical structure that captures the aliginmen
and distribution preferences of a sequential program. He dis-
tribution is obtained by partitioning the NTG approprigtel

The advantages include: (1) Because NavP computations mi-
grate freely across partitions, our methodology can focudue
sively on reducing communication overhead first and lateéeree
mine the actual computation partition and parallelizatidmis is
in stark contrast to SPMD, where the data partitioning inegdsard
constraints on the threads because they are stationarwg2ye-
ate a block cyclic distribution pattern that are uniqueljtesiifor
mobile pipelines to exploit full parallelism but not supfest by
the classical HPF; (3) Our approach aligns entries ratheer th-
mensions of the arrays and thus captures more accuratetpste
of data communication; and (4) Our solution allows the usg®f
arrays to store 2D or 3D data and supports sparse storagmeshe

Our methodology can be used either as part of an automated par
allelizing compiler or as part of a human-aided paralleitaef-
fort. We provide visualization tools to support the latteeisario.
We present experimental results from several scientifiicgipns
to demonstrate the effectiveness of our approach.

Keywords

data distribution, navigational trace graph, graph parting, nav-
igational programming, migrating computations

1. INTRODUCTION

Distributed parallel programming is traditionally donelie Sin-
gle Program Multiple Data (SPMD) style [19], in which a prese
or thread is stationary to a local partition of the data andstis
the owner of both the data and the computation associatédat
data. Remote data that is required by a process is commedicat
by arecv() and asend() posted by the requesting and the owner

School of Computer Science
and Engineering

Sydney, NSW 2052, Australia
jxue@cse.unsw.edu.au

Xue Ming Kin Lai, Michael B.
Dillencourt, and Lubomir
F. Bic
South Wales Department of Computer
Science

University of California, Irvine
Irvine, CA 92697, USA

{mingl,dillenco,bic}@ics.uci.edu

processes, respectively. Navigational Programming (IN§2®],
which is the programming of self-migrating computatiorssan-
other means to distributed programming. The charactesisif
NavP are:(1) Self-migration is made possible by explicitly insert-
ing navigational statements (i.&aop(dest)) into the code. The
computation pauses ahap(dest) statement, migrates to the des-
tination processodest, and resumes. Remote communication is
achieved by threads carrying data from one location to amot¥i-
grating threads are not permanent owners of any statioratey d
and the computation that each thread is responsible forpis ty
cally performed on more than one processor, incurring logt co
in communication;(2) Self-migrating computations are user-level
threads. They are non-preemptive and the synchronizagiomsng
them are through local events using thigznalEvent(evt) and
waitEvent(evt) statements. Two threads hopping between the
same source and destination preserve a FIFO ordering3amtere
are three kinds of variables: small data that follows a ntigga
computation is loaded tothread-carried variablewhile large data
that is stationary to a processor is stored imode variable Multi-

ple disjoint node variables can be used to construct a lbgicay
spanning several processors, calleBistributed Shared Variable
(DSV) A DSV provides a partitioned global address space.

The NavP methodology provides four steps of code transfor-
mations. Step 1. Data Distribution. The input to this step is a
sequential program to be parallelized. The objective isrtd &
data distribution that minimizes the cost of communicafiomnthe
given sequential program, with a balanced (data) load asdhe
straint. What is being distributed is the large-sized dataally
stored in a DSVStep 2. Sequential—» DSC. Using the data dis-
tribution obtained from Step 1, the sequential code is aungece
with hop() statements to obtaindistributed sequential computing
(DSC)program [24]. In a DSC program, there is a single thread
that is responsible for the computation but auxiliary thseaan
be used for prefetching [24]. The optimization process dhiob
ing a good DSC is called BLock Analysis[25], and it consists
of identifying Distributed Code Building Block€)BL0OCK) of ap-
propriate granularities to resolve and then finding thetrgbces-
sor(s) to perform the computation for eaclBBCK resolved. A
DBLOCK is a block of code that accesses data distributed across
multiple processors [25]. In resolving aBDock, we follow the
principle of pivot-computef29]. That is, the computation repre-
sented by a BLock should take place on the processor, called a
pivot node that owns the largest portion of the distributed data. For
a given data distribution, BLOCK analysis essentially conducts
computation distribution for NavB&tep 3. DSC— DPC.The DSC

(1)
(2)

(3)

for j=2

for i=1 to j—1

a[j] — 3= (ali] +ali))/(G + 1)

to N

(1) for j=2 to N

(1. 1) hop(nodemap(j]); x — af1[j]]
(2) for i=1to j—1

(2.1) hop(nodemap[i])

(3) x—jx(x+altil)/G+1)

(0. 1) signalEvent(evt, 1)

(1) parthreads j=2 to N

(1.1) hop(nodenap[3]); x — alL[j]

(2) for i=1to j—1

(2.1) hop(nodemap[i])

(2.2) if (i =1) waitEvent(evt,j — 1)
(3) x e 3% (x+alll)/G 4 1)

(3.1) if (i =1) signalEvent(evt,j)
(4) end for (4) end for (4) end for
(4. 1) hop(node map[3]); a[1[§]] — x (4.1) hop(node.nap[j]);a[L[j]] — x
(5) alj] < alil/j (5) afil3]] — alLfill/3 (5) alLl3)] — aln(3))/3
(6) end for (6) end for (6) end parthreads

(@) (b)

(©

Figure 1: A simple algorithm. (a) Sequential. (b) DSC. (c) DE using mobile pipelining.

thread from Step 2 can be cut into several shorter DSC threadstitioning NTGs. So both alignment and distribution are sdlvery

to build mobile pipelineg28] for distributed parallel computing

efficiently at the same timg#) Our partitioning tool can find un-

(DPC). The objective is to spread out computations as early as structured data layouts such as L-shaped blocks. Thesksrasel

possible, respecting dependency requirements. A molpieipe
can be phase-shifted to exploit full parallelism if the degency
relationship allows [29], achieving what the high-levehdaiage
constructDOALL does. signalEvent() andwaitEvent() are in-
serted to synchronize the DSCs constituting the mobilelipipe
Step 4. Feedback loopThis step estimates the tradeoffs between
communication/parallelism and adjusts data distribytidBLOCK
analysis, and pipelining for a minimum overall wall clockg.
Achieving good data distribution is the topic of this papgaod
data distribution schemes are crucial to the performanceisf
tributed parallel programs, because mistakes made in dstéd-
tion cannot be corrected by later programming efforts. Vés@nt
a data decomposition approach and intend to use it as padaifa
layout assistant tool for regular applications. The apgpian pro-
grams that we are trying to help out thus are assumed to é¢xhibi
repeatable data accessing patterns — patterns that aria seeall-
sized input data are going to show in very large problems.s Thi
assumption holds also for existing automatic data decoitipos
techniques for regular applications [2, 8, 11, 16, 20, 33, $iAce
they need static or dynamic performance analysis to find mk-p
lem size parameters such as loop bounds and array sizesrt/as pa
our tool, the programmer will be able to visualize the dayeldas
found and experiment with different input sizes. Irregupplica-
tions that are attacked using run-time solutions (e.g.Atti@ptive
Mesh Refinement technique) are outside the scope of thig.pape
In comparison with existing automatic data decompositémint
niques that are mostly analytical [2, 8, 11, 16, 20, 33, 22}, o
“numerical” approach has a number of advantagéy: Because
NavP computations migrate freely across partitions, outhowe
ology can focus exclusively on reducing communication bgad
first and later determine the actual computation partitigo imi-
grating threads and the parallelization using pipeliniligis is in
stark contrast to SPMD, where the data partitioning impésed
constraints on the threads because they are stationanytivety,
since the mapping between a data element to the instanchs of t
statements involving the element is one-to-many, decigdihgre
the element goes is an easier problem than deciding how the co
putations are partitioned. Once a data distribution is ehpsom-
putation partitioning can be done easily using migratingals;
(2) We create a block cyclic distribution pattern that is unigue
suited for mobile pipelines to exploit full parallelism bubt sup-
ported by the classical HPF. This allows us to exploit fultgha
lelism without needing to redistribution large amount otadas
required by th®0ALL approach(3) We obtain data layouts by par-

from regular algorithms that access structured data streste.g.,
dense square matrices), which means that unstructurediidéia
bution is desirable even for seemingly simple applicati@sr so-
lution is able to do this because it aligns entries rathen thimen-
sions of the arrays and thus captures more accurately theotos
data communication; an@) Our approach is independent of array
storage schemes used while those relying on componenityaffin
graphs (CAGS) or its variants [8, 11, 16, 20] are not. We carcbe
help the programs that use sparse storage schemes. Westifi} ju
these claims by examples and experimental results.

The rest of this paper is organized as follows. Section Dintr
duces NavP using a simple example. Section 3 reviews thiedela
work. In Section 4, we present our data decomposition tegtnin
the context of turning sequential into DSC programs. Sedidis-
cusses how to find data distributions for DPC programs. Seéi
presents experimental results. Section 7 concludes the.pap

2. BACKGROUND

To make this paper self-contained, we use the following exam
ple to illustrate how NavP programming works. Consider the s
ple algorithm listed in Fig. 1(a), in which thg" iteration of the
outer loop, which computes j], consumes the values afi] pro-
duced by all the previoug iterations. We assume a block data
distribution pattern for simplicity, and use individuatays on the
PEs to host the data blocks. These arrays logically form a.DSV
The auxiliary arrayhode map|.] provides the logical node hosting
a given array entry, andl[.] contains the local array index of an
entry with a given global index. A DSV thus provides a paotied
global address space. The computatioralgf should take place
on the PEs where theli]s reside, so that the cost of communica-
tion for the subcomputation eff j] is minimized. We therefore put
a[j] in a thread-carried variable, and insertop() statements in
the sequential code so that the computation follows the itlatz
cesses (i.e., thei]s) through the network. The resultis a DSC pro-
gram: the computation uses distributed data but has a dogle
of computation. Figure 1(b) shows the DSC code. Thgs) and
load/unload compound statements are inserted (at lingf (2.1),
and (4.1)) without changing the code structure. In the pseadk,

x, i, andj are thread-carried variables, asld is a DSV. If we cut

the single long DSC thread into multiple shorter threadsgetea
DPC program, listed in Fig. 1(c). Each computationjdfecomes

a DSC thread that is spawned by gherthreads at line (1). The
NavP parthreads construct generalizes the classicalACROSS
andDOALL parallelism constructs, but the spawned threads are DSC

threads. The code for each thread, lines (1.1) through €&)ains
almost the same as the DSC code listed in Fig. 1(a). The ofily di
ference is the insertion of two new lines to synchronize tueases
to the entrya[1]. Each thread waits at line (2.2) until the previous
thread is done accessing], and at line (3.1) it notifies all other
threads on the logical node that it has finished accessitlg In
this way, the threads organize themselves into a mobilelipgpe
when they access[1]: the thread computing[j] runs immedi-
ately after the thread computingj — 1]. Because of their FIFO
scheduling, migrating threads do not pass each other in tiglen
pipeline. Each computation migrates through the pipefinegres-
sively visiting the successive stages (the entsjg$ that it succes-
sively incorporates into its computation). Notice that iaVR syn-
chronizations are only local among the collocated threBigire 2
schematically depicts how a mobile pipeline works.

j o+l

PES

Figure 2: Mobile pipeline of DSC threads.

NavP has a number of advantagé€s) As validated by our pre-
liminary results [29, 30, 28], NavP implementations arealsv
competitive with the best MPI implementations in terms of-pe
formance, and in some cases are considerably better. Acmkpe

chine requires a decomposition (i.e., mapping) of the @Enos
data and computation across the processors. In the SPMDImode
data decomposition is performed first (by the programmeoar-c
piler) while computation decomposition is inferred frone ttata
decomposition using the owner-computes rule. In NavP, as di
cussed earlier in Section 1,HDOCK analysis essentially conducts
computation decomposition. So we will review only some auto
matic data decomposition techniques below.

Given a code region, which may be the entire program, two dif-
ferent approaches are distinguishsthtic decompositiond 1, 20]
(under which the data distribution for an array is fixed in éme
tire region) anddynamic decompositiorig, 8, 16, 33, 22] (under
which different data distributions for an array may be usedif-
ferent segments of the region). In the latter case, the maegidler
consideration is divided into code segments, capladses such
that data remapping is only allowed between phases [8, hhe
former case, the entire region forms one single phase.

Given a phase, some techniques [16, 20, 33] decompose the map
ping problem within the phase into two sequential stepgnatient
and distribution. The alignment step identifies the dimemsif all
arrays that should be mapped to the same dimension of a parces
network. The distribution step decides which aligned disams
should be distributed in BLOCK, CYCLI C or BLOCK- CYCLI C
manner. A central representation for the alignment probitethe
weighted undirectedomponent affinity grapfiCAG) [20], where
the nodes represent the dimensions of all arrays in the pbdges
the alignment preferences between dimensions of distimays,
and the edge weights the relative importance of alignmeetf- pr
erences. Alternatively, both steps can be solved at the samee
Based on the concept of CAG, both communication constréimts

use of NavP, DSC threads can speed up the execution of even gedycing communication) and parallelization constrafds pre-

single sequential process [24{2) NavP is structured distributed
programming, as it directly captures the algorithm. MP, byne
parison, requires significant restructuring of the prograbscur-
ing its original purpose. It has been pointed out #atd andrecv
are harmful today for much the same reason that unrestrigetes
statements have been considered harmful since the “seftevar
sis” of the 1960's [10]. Because of its structured prograngni
NavP allows us to parallelize certain programs that are rgdige
considered unparallelizable using other approaches (38NavP
provides incremental parallelization, in the sense thatcmential
program can be converted into a fully parallel program tgroa
sequence of small transformations, where each interneedtap
is a fully functioning program [30]. This is in sharp contras
MP, where a parallel program usually requires a completeitew
and major restructuringd4) Today a hybrid programming model of
MP+OpenMP is sometimes used [31], but this requires extensi
programming efforts. NavP is a unifying approach that alaw to
exploit both fine- (multithreading on shared memory) andeea
(pipelined tasks on distributed memory) grained paraiheliThese
advantages make NavP a competitive alternative to MP agem in
mediate representation for manual programming as well && au
matic source-to-source code transformations by a compiler

3. RELATED WORK

Distributed parallel computing has been a grand challeagé,
itis perhaps more important today than ever as we reach Igsd p
ical limits in driving processor clock speed and therefonm tour
focus on concurrency in software development. Recentlynater
of new programming languages or systems have been proptsed [
5, 14]. Good data distribution schemes are of key importamed
of them.

Compiling a sequential program for a distributed memory ma-

servingDOALL parallelism) are solved analytically [11] to find a
data decomposition for a phase. In [2], affine transfornmatiare
used to find both data decomposition and computation decsimpo
tion simultaneously. They aim at computing communicafiee
mappings with the largest degreenafALL parallelism [12].

There are several approachs to finding a data layout for a code
region consisting of pre-defined phases. In [16], the probie
solved by 0-1 integer programming based on the so-called dat
layout graph (DLG), whose nodes are candidate layouts feryev
phase and edges represent the remappings between cataldate
outs. The solution found is thus limited to the set of caniday-
outs initially selected for each phase. Only BDOCK distributions
are considered. In [8], a variation of CAG, calledmmunication-
parallelism graph(CPG), is introduced so that alignment, distri-
bution, remapping and0ALL parallelism are all considered in the
same framework by 0-1 integer programming. In addition to 2D
BLOCK distributions, 2DCYCLI| Cdistributions are also considered
for triangular loop nests. In [2], a so-calledmmunication graph
with its nodes representing the loop nests and edges theprema
pings between the loop nests is used to model data distiiziti
that change dynamically. Both data and computation decempo
tions are found in a linear algebra framework in a greedy raann

Like all these data decomposition techniques, our proptesed
nigue is intra-procedural. Some inter-procedural tealesgex-
ist [3, 23]. Our technique is defined for individual phasebgere
a phase (to us) is a well-defined algorithm usually in the fofra
function. This gives us the ability to handle large applmasg with
multiple function calls. Extending our technique to mylkiase al-
gorithms requires deciding whether or not to redistribtie data
between each pair of consecutive phases. One approachps to a
ply our technique to each phase and to each sequence of gensec
tive phases, treating the sequence as a single phase. €ghisas

applying our techniqu@(n?) times if there aren phases.) Once
we have done this, the problem of deciding at which phasedoun
aries we should redistribute the data can be solved by aktfai-
ward dynamic programming algorithm, quadratic in the nuntdfe
phases. (The problem is essentially the same as finding geshor
path in a directed acyclic graph with positive costs on bates
and vertices.)

In comparison with the existing analytical techniques, ‘owr-
merical” approach has several advantages that we summatze
the end of Section 1. The problem of finding optimal data de-
composition is known to be NP-complete. Previously, défer
techniques use different heuristics to estimate the beneffipar-
allelism and the cost of communication in their formulatorAs
discussed above, they find approximately optimal solutaoradyt-
ically or by integer programming. Our approach is numericshe
sense that we find optimal solutions by using a graph partitigp
tool (e.g., Metis [15]). Our approach is also approximatesisuch
a partitioning tool is.

4. FINDING DATA LAYOUTS FOR DSC

When turning a sequential program into a DSC program, we
must first find a data distribution for the DSC program. In this
section, we present an intra-procedural technique foreaaty this
task. Presently, our technique works on individual phasésch
are well-defined basic algorithms that are usually in thenfof
functions in scientific applications. In what follows, by ebgram
we mean a phase (e.g., a code region) for which data layoeite ar
be found. How to find data layouts for multiple phases is oturf
work.

There are three key step$l) Build a so-callednavigational
trace graph(NTG) or trace graph for short by program instrumen-
tation;(2) Find a data layout by partitioning the NTG using a graph
partitioning tool; and3) Express the data layout found using the
data distribution mechanisms that NavP supports.

Let there b processors. To find a data distribution for a DSC
program, we will find &-way partition of the corresponding NTG.
The objective is to find such a data distribution by minimigthe
cost of communication, with a balanced (data) load as the con
straint. In Section 5, we will discuss how to find a cyclic ddist
tribution for a DPC program with a balanced computation Idzyl
using cyclic distributions, we can also make the tradecddfsvieen
communication cost and exploitable parallelism.

4.1 Buildingan NTG

DEFINITION 1. An NTG for a program is a weighted undi-
rected graph (without self-loops), where the vertices lagesntries
of DSVs (one for every entry of every DSV) and the edges (with
positive weights) represent the affinity relations amoremértices
as the locus of computation finds it way through them.

The NTG for a program is generated by running the program
against a small problem. The larger the weight of an edgénés, t
stronger the two incident vertices want to stay togethehersame
PE. Unlike component-affinity graphs [8, 11, 16, 20, 21], NTiGs
are constructed for NavP programs, which are equipped with m
bility and can follow the data. Thus, the construction of ahG\
follows the movement of the locus of computation under theMNa
view [27]. In addition, the data entries of the arrays thalt e
distributed, regardless of which array they belong to, bexthe
vertices of the same graph. In this way the problems of aligmm
and distribution, which are solved separately in other apghes,
are addressed in a unified manner.

1 Algorithm BuUILD NTG
2 INPUT: a program
3 OUTPUT: a (weighted undirected graph) NT@G = (V, E)
4 LetListOfStmtbe a list of all statements executed in that order
for a given program with respect to a small problem size
5 // Step 1: Edge Creation (with G being a multi-graph)
6 LetV be the set of all DSV entries accessed in the program
7 LetE=10
8 // Add L edges
9 for every entryv in every DSV array
Add toE’ an L edge between and each of its neighboring entries
/I Add PC edges
for every statement in ListOfStmtwhose LHS is a DSV entry

13 Repeatly replace every non-DSV data entiy the RHS ofs, where
v is defined by the statement of the form v = “...", with the “...”

14 Let RH Ss be the set of all DSV entries in the RHS of

15 Add to E a PC edge between the LHS and every entriRii S5

16 // Add C edges

for every two statementsandt in ListOfStmtsuch that no statement
in between inListOfStmthas access to DSV data entries

18 LetV; (V;) be the set of all DSV entries accessed ift)
19 Add to E’ a C edge between every entrylify and every entry iV
20 Remove all self-loops i6+

/I Step 2: Edge Weight Selection
#defineL_SCALING = a nonnegative value (typically withi, 1])

23 Letnum.Cedgese the total of C edges
24 Setc=1

25 Setp = num Cedgest 1

26 Setl = L_SCALING * p

Merge the multiple edges linking the same two vertices int
one single edge by accumulating their edge weights

Figure 3: An algorithm for building an NTG for a program.

(1) for i=1 to M—1

(2) for j =0 to N—1

(3) afi)ls] — ali— 1] +1
(4) end for

(5) end for

Figure 4: A program for illustrating construction of NTGs.

An NTG is constructed in two stepq1l) edge creation, and
(2) edge weight selection, which are described in the nextaeti

4.1.1 Edge Creation

The construction of an NTG is based on three kinds of edges.
First, locality (or L) edges are introduced between the mgdging
entries of a DSV and they are assigned with the wefghthese
edges represent the locality of data access exhibited ity edgo-
rithms (thus they are not dependent upon the particularighgo
being parallelized), and they aim at obtaining regular d&yauts
for each array. Second, a producer-consumer (or PC) edde wit
the weightp is introduced between an LHS DSV array entry and
a RHS DSV array entry. These edges indicate the occurrence of
communication if the two linked entries do not reside on thes
PE. Finally, every array entry of a DSV array in one statenent
connected with every DSV entry in its successive (in timajest
ment with a continuity (or C) edge with the weightThese edges
represent the change of locus of computation (i.e., hopkgifwo
linked entries do not reside on the same PE and their purgdse i
help improve the granularity of computation.

hl

I PC edges ip = 1, then the C edges will be assigned the weight
} | of infinitesimalc = € > 0, and the L edges a nonnegative value
\ ao,0—2 ap, 12 agp,2 £20.

| N A The motivations for this weight assignment are as followswé

[4904 4904 495 shall see in Section 4.2, we obtain a data distribution faogi@mm
\

\

\

\

\

\

-)
ap,0¢- - -N0,17- - - 30,2

AN N A
NN N
S N U NG U

s/ N\

!
Y

Y

I

L

IR E SN E P b E by partitioning its NTG such that the weights of the total edges
| \k -a1,0¢ - 31,1 - - 3012

‘ ~ ~

‘ Ve

!

\

\
I
I
I
I
I
- L gy,0—185 gy, 185 q o

are minimized. Since C edges have infinitesimal weights eovet

‘ \&/ <f\\//<f\\/ < Voiod N a0d N\ 04 to PC edges, they cannot (and should not) collectively affe
‘\/ \ oo\ o\ y 3 P producer-consumer affinity relationship of the data estrighus, C
| >/“2a0<' S02,1¢)2, 2 q9,0—185 ap1 185 gg o | edge cuts are encouraged and so is parallelism because the€ e
\ \< <5\\//<;\\//<; N N N are not true dependences but artificial sequencing refatiéis a
AR SAGAN SN & AN Ty 1 result, the entries linked with PC edges tend to stay on theesa
\L —a3,07. - -Na3.17. - Nz, L a3,0—5 a3,1 -5 a3 0 PE. As for L edges, choosing different weights makes it fbs$o
~ pCc---¢C L 0=05p tradeoff betyveen o_Iata locality and paral_lt_alism(I_fs close top or
’ larger, we will obtain a more regular partition, which usya¢sults
(a) NTG (after Step 1) (b) NTG (after Step 2) in better data locality. I is close to 0, the resulting data partition
will reflect more accurately the actual cost of communicatibthe
Figure 5: NTGs for Fig. 4 (M=4, N=3). program. Such a partition tends to be less regular but mayvall

more parallelism to be exploited.
There can be more than one way of assigning edge weights. Our
solution is given in lines 22 — 27 in Fig. 3, whekeSCALING is a
Our algorithm given in Fig. 3 creates these edges in lines 5 — program-dependent parameter, which can be tuned in thedekd

20. In line 4, ListOfStmt is the list of all dynamically executed |oop of NavP based on performance profiling and evaluation.
statements obtained by running the sequential program fetaa Figure 5(b) depicts the final NTG obtained for the progranegiv
tively small problem size. In lines 8 — 10, we introduce ldyal in Fig. 4, under the assumption that= 0.5p. The following sec-
edges. In lines 11 — 15, we introduce PC edges, which regresen tion explains how such a graph is partitioned to obtain a distai-
data dependences among DSV entries. Note that a PC edge existbution for a machine configuration.

between two DSV entries if one depends on the other directly 0 To understand the roles that L, PC and C edges play and our so-

indirectly via a chain of non-DSV data entries. Hence, ligeis lution for their weight assignment (lines 22 — 27), let ussidar
needed to detect these PC edges. Consider the followingsegu the four partitions given in Fig. 6 for the example given ig M. In
of dynamically executed statements in a program: these (and all other) partition diagrams, all data entfiesiag the

same grey scale are assigned to the same partition. The NFGs f
the example (with and without final edge weights) can be faand
Fig. 5. Let us consider Fig. 6(a). When only PC edges are adled,
array columns are not linked by any edges. A 2-way partithorst
can contain any half of the columns. Such a partition exifit
parallelism at the expense of some thread hops (i.e., firaegta

t1 = b[3] + 1
t2 =a[2] +1t1
a[5] =t2 + a[4]

wherea[] andb[] are DSVs, and 1 andt 2 are non-DSV en- computation). If we now include C edges and choose the weight

tries. Afterline 13a[5] = t2 + a[4] becomes of PC and C edges according to line 25, the C edges will play the
role of tie-breakers and bring us a coarser grained dataldlison

a[5] =a[2] + b[3] + 1 + a[4] shown in Fig. 6(b). Through edge weight selection, we priefent

all C edges rather than even a single PC edge when the NTG-is par
titioned. As a result, the data distribution obtained in. Bifp) ad-
mits full parallelism with also a minimal number of hops. léwlid

not set edge weights using line 25, or in other words, if welset

C edges to be larger than infinitesimal compared to the PCsedge
we might get the partition shown in Fig. 6(c) if the matrix lped
long and thin. By introducing L edges, we will obtain moreueg
lar layouts, or precisely, block distributions if the weiglof the L
edges are chosen to be relatively large, as shown in Fig. 6@ih-
pared to the first solution, the third and fourth solutionduees
the number of hops. Compared to the second solution, they los
some degree of parallelism; pipeline parallelism is explde but

full parallelism is not since the computations on the twdifians
cannot start simultaneously due to dependences withimowu

Thus, in lines 14 — 15, a PC edge is added between the DSV entry
a[5] and each of the three DSV entrie$,2] , b[3] anda[4] .
After line 13, all the statements that define the non-DSViestire
ignored. It is possible to have multiple PC edges betweesdhee
two entries since the RHS entry may be fetched from its hgstin
processor multiple times. This can happen since the RHS entr
written multiple times and must be fetched each time befbig i
used. Even if the RHS entry is never updated, we may still shoo
to fetch it each time that it is used in order to obtain a sdalab
solution.

Inlines 16 — 19, we add C edges to the NTG. Again, there may be
multiple C edges between the same two entries representiitg m
ple hops required if both do not reside in the same PE. In lhe 2
we remove all edges linking a vertex to itself.

At the end of this step, the NTG obtained is a multi-graph with Ce .
possibly one L edge, multiple PC edges and multiple C edges be 4-2 Partitioning the NTG
tween any two vertices. As an example, applying this partiotd- A DSC program consists of a single thread runningkoRESs.
gorithm to the program in Fig. 4 yields the NTG shown in Figa)5(An NTG will be fed to a graph partitioning tool to find way

partition with the overall objective of minimizing commuwaition

4.1.2 Edge Weight Selection cost incurred by the partition under the constraint of a theed
Given the roles that L, PC and C edges play, the relative mag- (data) load.
nitudes of their weights will be chosen such that if the weigh Presently, the graph partitioning tool we use is Metis [MNbtis

10

15

20

25

30

2

4
J

6

10

- 15

20

25

30

N e e e e e e e

4
J

6

10

2

4
]

6

15

20

25

30

2

4
]

6

(a) PC edges

(b)PC+C (c)PC+largeC (d)PC+C+L
(¢ = 0.5p)

Figure 6: Two-way data distributions obtained by a graph par
titioning tool for the program given in Fig. 4 (M=50, N=4).

uses a parameter called UBfactor to specify the imbalanceead
between the partitions during recursive bisection [15fhdfre aren
vertices in the NTG, the number of vertices in each partitioring
each bisection step is betweg0 — b)n/100 and (50 + b)n/100.
In all the applications considered in this paper, UBfaclonn find-
ing ak-way partition, Metis will minimize the sum of the weights
of the cut edges spanning @llpartitions. According to the Metis’
web site, graphs with over 1M vertices can be partitioned56 2
parts in under 20 seconds on a Pentium Pro PC.

By finding a minimum cut to partition an NTG, we are able to

minimize the total data movement among the PEs. We also main-

tain a data load balance in terms of data amount on the PEad®ca
a balanced partition is used as an optimization constriliowever,
balanced data load does not imply balanced computation Tdad
will not affect DSC since it runs in one thread. As a matterast f

a balanced data load leads to a scalable DSC program. For DPC

we use block cyclic data distribution to achieve computataad
balancing and better parallelism (more in Section 5).

Due to the presence of C edges in the NTG, which represent

change of locus of computation, we minimize the number afabr
hops. In other words, the C edges are helpful in keeping aseoar
level granularity, which is important to performance. Weaduce

C edges to capture the artificial sequential dependenayduated

in sequential algorithms. Our NTGs are generated such titat ¢
are more likely to be placed on the C edges to exploit paistdiel
other things being equal. If cuts are on PC edges, they are mor
likely placed in the “direction” that is “parallel” to the PE€dge
chains because this results in less PC edge cuts. For thimreae
claim that our approach does not hinder parallelism.

4.3 Expressing the Partitions

We are building a visualization tool to present the reconueen
data layouts (i.e., partitions) to the programmers. Thed@plays
the partition, based on the mapping from array indices tphyra
vertices used in the code instrumentation. Our prelimimasylts
are shown in Figs. 6, 7, 9, 11 and 12 as five examples.

These results are from regular algorithms that accesststaat
data structures (e.g., dense square matrices), which ritegtns-
structured data distribution is desirable even for seelyisignple

10|

20

-— 30

40

50

60

10 20 30 40 50 60
J

(a) Without C edges

10|

20

- 30

40

50

60
10 20 30 40 50 60 10 20 30 40 50 60

i i
(b) With C edges (c) With C+L edges{ = 0.5p)

Figure 7: Transpose of a 60x60 matrix (3-way partition).

applications. Therefore, NavP needs to support not onlclthe
sic distribution mechanisms suchBISOCK andBLOCK- CYCLI C
as in HPFGEN_BLOCK andl NDI RECT mappings (limited to one-
dimensional indirection arrays) as in HPF-2 but also otteascan
describe the unstructured data layouts found by a grapitipast
ing tool. How to describe unstructured data layouts in NaiFoe
part of our future work.

4.4 Applications

This section discusses show how our data distribution tanl ¢
be used to find data distributions in three important apptos,
matrix transpose, ADI (Alternating Direction Implicit) tegration,
and Crout factorization. These applications, which exhiiffer-
ent data access patterns, serve as good examples to valitate
proposed methodology. For matrix transpose, our appraaahlé
to find L-shaped communication-free data distributions tanot
be found by previously existing approaches [8, 11, 16, 2D,\8&
are able to find data distributions for ADI [17, 1, 16, 18] botsb
by solving both alignment and distribution at the same tims.
for Crout, the data distributions we find are independentarbge
schemes used for arrays (unlike these previous approaches)

4.4.1 Matrix transpose

Matrix transpose swaps the anti-diagonal entries of a maktie
pseudocode is omitted. The data distribution found as shiawn
Fig. 7 consists of L-shaped partitions; it is optimal in teese that
itis communication-free.

If we did not have C edges in the NTG, each anti-diagonal pair
will still be distributed in the same partitions, but pairdlwe dis-
tributed in a dispersed fashion, as shown in Fig. 7(a), enlikat is
shown in Figs. 7(b) and (c), where contiguous partitionssaen.

With L edges (weight = 0.5p), the resulting partition is regular
(except that the bottom-right entry is included in the tefi-parti-
tion), as shown in Fig. 7(c). In the absence of L eddes (), the

partition becomes less regular, especially along the miaigodal
of the matrix, as shown in Fig. 7(b).

Our solution cannot be found by prior approaches since th
are limited toBLOCK and BLOCK- CYCLI C[8, 11, 16, 20, 21].
This optimal solution enables the programmers to expldig#u-
allelism with zero communication at a coarse granulariele

4.4.2 ADI integration

// time iteration

(1) for iter =1 to niter

// Phase I:row sweep

for j=2 to N

for i=1 to N
c[i][3] = e[i](3] — <[3][3 — 1] * a[i][3]/b[i][5 — 1]
b[i](3] = b[i][3] — ali]l3] * a[i][3]/p[i][3 — 1]
end for

end for

for i=1 to N
c[i][N] = c[4][N] /b[1][N]

end for

for j=N—1to 1 by —1

(12) for i=1 to N

(13) c[il[3] = (c[ill3] — ali][3 + 1] * c[i][3 + 1]) /b[i][3]
(14) end for

(15) end for

// Phase II: column sweep

(16) for j=1 to N

(17) for i =2 to N

(18) c[i][3] = c[i][3] — c[i — 1][3] * a[i][3]/p[i — 1][]]
(19) b[a][3] = bla][3] — ala(3] * alt](3]/bli — 1][3]
(20) end for

(21) end for

(22) for j=1 to N

(23) c[N][3] = <[N][3]/D[N][3]

(24) end for

(25) for j=1 to N

(26) for i=N—1to 1by —1

(27) <li]l3] = (c[1][3] — ali + 1][3] * c[i + 1][3]) /bl3][3]
(28) end for

(29) end for

(30) end for

Figure 8: Pseudocode of ADI

ADI integration is an example used by several papers on data
distribution [17, 1, 16, 18]. The pseudocode for ADI is lit@
Fig. 8 [17, 16]. There are three 2D arrays, namely, andb, in-
volved in the computation. This code is usually subdivided two
phases, namely a row sweep phase (lines (2)-(15)) and a nolum
sweep phase (lines (16)-(29)). These two phases are sdediy
an outer loop of time iteration (line (1)). One possible soly, ex-
isted in previous work, is to find two different data mappisg#ed
for their respective phases. We use our tool to find these épo s
arate solutions and plot them in Figs. 9(a) and (b). Figuck &-
picts the data distributions for two phases combined tagetfihe
two sweeps are tWDOALL loops (i.e., full parallelism with no com-
munication) if they use their own data distribution, but etleen
the sweeps a dynamic data redistribution is needed. If Hutlsgs
are combined, pipeline parallelism can still be exploit&tie ad-
vantage of this data distribution for the entire programhist tho

5|

15]

20l

5 10 15 20 5

J
(b) Phase Il

10 15

20

5 19

J
(c) Phases | + I

15

20

J
(a) Phase |

Figure 9: ADI integration on a 20x20 matrix (4-way).

4.4.3 Crout factorization

Crout factorization is a convenient variant of Gaussiamitia-
tion [9, 13]. Figure 10 lists the sequential Crout algorithitve
assume that the matrix being factoriz&d, is a square and sym-
metric matrix. Sinced is symmetric, only its upper half needs to be
stored. In our implementatioi]] is a 1D array. When the matrix
is sparse and banded, a 1D auxiliary array is used to stoiadbg
of the first non-zero entry (from the top) of each column.

(1)
(2)
(3)
(4)
(5)
(6)
(7

for j=1 to N
for i=1 to j—1
K[i][3] — K[i][3] -
end for

121 K] - KRG

for i=1to j—1
T — K[i][j]
K[A][3] — g
(8) K[3](3] — K[3](3] — T - K[1][3]
(9) end for
(10) end for

Figure 10: Pseudocode of Crout factorization.

5

10|

15

0

25|

30

35

5 10 15 20 25 30 35 40
]

(b) With L edges { = p)

5 10 15 20 25 30 35 40
J

(a) Without L edgesq = 0)

40

Figure 11: Crout factorization on a 40x40 matrix (5-way).

As shown in Fig. 11, our tool suggests a column-wise partitio
Note that the lower half of the matrix is not stored and shddd
ignored. For this algorithm, we obtain a regular data distion if
the weights of PC and L edges are chosen to be equal.

In our approach, an NTG is independent of the storage scheme
used for the arrays in a program. This is an advantage overaev

dynamic data remapping is needed between the two phases. Thether approaches [8, 11, 16, 20, 21] in which their component

cost of a dynamic data remapping can vary dramatically derdif
ent platforms.

affinity graphs are constructed from the dimensions of th&ima
ces [18, 16, 7]. Furthermore, these approaches may haveuttiffi

in handling non-linear array subscript expressions intced due

to 2D-to-1D array storage mappings. As demonstrated here, o
approach works when a 1D array is used to represent a 2D ma-
trix. It also works for sparse and banded matrices (whichoftem
stored in 1D arrays). Figure 12 shows two such examples.

.10

15

40

[
20 [T

5 10 15
j

(a) N=20, 2-way

50 H
50

H
40

20 10 20 30

j
(b) N=50, 4-way
Figure 12: Crout factorization with sparse banded matrices
(30% bandwidth).

5. FINDING DATA LAYOUTS FOR DPC

Elapsed Time

TI2

—1

ko Number of Cyclic Blocks

Figure 13: Performance as block cyclic data distribution isre-
fined (assuming two PEs, T is the sequential execution time.)

In NavP, we parallelize a program by first transforming it 8@
and then turning DSC into DPC (Section 1). In Section 4, we pre
sented our methodology for finding data layouts for DSC. Tata d
partitions found do not hinder parallelism. Furthermoheytwill
also serve as the starting point to exploit more parallelism

We propose to use a block cyclic data distribution evolvednfr
the solution suggested by our tool and apply pipelining doales-
formation [26] to further improve performance. In our wokk,
block cyclic distribution means atrround cyclic distribution of an
(nK)-way partition to &-processor machine, where the partitions
can be rectangular or other shaped (e.g., L-shaped) bl&ksur
block cyclic distribution is a more general form®if OCK- CYCLI C
distribution. It would be difficult, if not impossible, to fihoptimal
block cyclic distributions automatically — there was notlsa fu-
tile attempt before. In previous work on automatic dataritistion
techniquesBLOCK is exclusively used [16]CYCLI Cis consid-
ered only for triangular loop nests [8]. Wh&hOCK- CYCLI Cis
used [11], the block sizes (or equivalentty,here) are selected by
an exhaustive search. In [2, 2BLOCK- CYCLI Cis considered

only after data distributions have been found for virtugbarame-
terized processor spaces.

Figure 13 qualitatively depicts how the execution time demn
as we refine the block cyclic data distribution to have smaltel
smaller block sizes for the simple algorithm listed in Fig.Qur
data distribution tool provides a partition with the minimwom-
munication cost as our starting point (Number of Cyclic Blee
1 in Fig. 13). As we increase the number of cyclic data blocks,
we obtain more and more parallelism (hence less and less time
as depicted by the curve marked with P) at the cost of inctease
communication (depicted by the curve marked with C). Not th
we follow the data distribution pattern suggested by oul wdwen
we increase the number of data blocks (when the number of data
blocks exceeds the number of PEs we call the data blocks&firt
blocks”) — this will make sure that the communication costais
the minimum for each and every new partition we come up with.
At some point (when k=k0), the total execution time, demdby
the curve with dashed line, will reach the minimum and themtst
growing if we further increase the communication cost. Oar-p
posed approach provides a systematic way of achieving tse be
performance for a particular application.

—B&—Block Size 5
--O-- Block Size 1

6 11 - A -Block Size 2 n%
& 5 1 —¥—Block Size 10 76—
=] v /é
T 4
(]

&3

0 —— ——
1 2 3 45 6 7 8 9 1011
Number of Processors

Figure 14: The performance of the simple problem.

As mentioned earlier, our data distribution guaranteea liestd
balancing but not computation load balancing because we imav
grating computations in NavP. Block cyclic data distribatis ex-
pected to help with computation load balancing because atanp
tions will migrate to all the PEs more evenly.

Performance data in Fig. 14 shows how adjusting block size of
block cyclic data distribution could affect performanceh&i the
block size of block cyclic data distribution is chosen to hete
performance is the best. A too coarse block size (of 10) ooa to
fine block size (of 1 or 2) gives us worse performance.

6. EXPERIMENTAL RESULTS

In this section, we present our experimental results. Tha da
was obtained using a network of SUNW Ultra-60’s with 450 MHz
UltraSPARC-II CPU, 256MB of main memory, 1GB of virtual mem-
ory, 100Mbps of Ethernet connection with a collision-fregtsh,
and using the NFS file-sharing system. The C compiler used was
gcc 3.2.2, the MPI used was LAM MPI 7.0.6 [34], and the NavP
compiler and runtime system used wag 86ENGER4L.2.05 [6].

6.1 Matrix Transpose

We have compared the costs of transposing a matrix in phralle
under two circumstancegl1) Each PE gets a vertical slice of the

Cost of Matrix Transpose

the PEs in order. (This is unlike the HPF pattern where the PEs
are arranged asax 2 processor grid and the first row of blocks

~

o
L

2520 remote are assigned cyclically along the first row of processorbg fiext
g Y/ y g p
55 —4—5040 remote rows are assigned to all the PEs in a similar way, except kiegt t
£, b L are shifted east-ward one position from their previous rowsis
[.
3 a ¥ 10080 remote NavP block distribution is effectively a “skewed pattern’hen
g° S EN Ezs0local the sweeper threads sweep through all the rows or columiEal
o \ h - #--5040 local P P 9
) . \@\@\@ D are busy simultaneously. That is, we achieve full paraiheliat the
el Tal e o 10080 local cost of0(N) as one layer of the matrix entries is carried over from
\éx,_éi’é‘ block to block. In contrast, in the example shown in Fig. 16(c

o

only two PEs are busy at any time as the sweeper DSCs sweep
through. The situation for the HPF pattern is worse when tag P
are arranged as a 1D grid when, e.g., the number of PEs is & prim
number. As for the cost of communication, theALL approach
mentioned in Section 4.4.2 requirg&®) in data redistribution.

Number of PEs

Figure 15: The cost of matrix transpose.

ADI Performance (niter = 10)

10

1| 2| 1| 2 1| 2| 3| 4
94 R —— 2520 NavP pattern
3 4 3 4 2 3| 4 1 s - //.,/’ —&— 5040 NavP pattern
1| 2| 1| 2 3| 4] 1| 2 I —@— 7560 NavP pattern
. -
(1] a[2[2] [a]2[1] 2] [3]4 3[4 [4]a2]3 " x//r‘ # 10080 NauP patton
e 4 linear speedup
(@) 1D block (b) 1D blk cyclic (c) 2D blk cyclic (d) 2D blk cyai o ° P —B- 2520 HPF pattern
(HPF pattern) ~ (NavP pattern) § *1 7 —ie 500 v patan
& o] P /‘///3’ . 1 —®- 7560 HPF pattern
Figure 16: Block cyclic distribution patterns. /(e e ¢ +10080 HPF pattern
3 - oF .- : --4-- 2520 DOALL
, .}//é’.rt! g -~ 5040 DOALL
. ; a - 7560 DOALL
14w ® -~ 10080 DOALL
matrix, as depicted in Fig. 9(b). This data distributionuiegs re- .
mote data communication; ati@l) Each PE gets an L-shaped slice 2 s 4 s s 7 8 o 10
of the matrix, as depicted in Fig. 7(c). Only local data moeetris Number of PEs
needed for this data distribution. Our experiment, as jptesein)
Fig. 15, shows that matrix transposing involving remote mami- Figure 17: The performance of ADI.

cation is more than twice as expensive as done locally.

6.2 ADI integration As presented in Fig. 17 (the numbers in the legend are matrix
We first turn the ADI code into a block implementation. That ©rders), the NavP program using the NavP block cyclic data di
is, we introduce “distribution blocks” — submatrix blocksat are tribution pattern performs the best. Using the HPF blocKicyc
basic units for data distribution — in the matrices and contree pattern, the NavP program incurs the same communicatidrotos
loops over the matrix entries into the loops over the entiiisin 0(N) but has less degree of parallelism. Therefore, the perfocma
the distribution blocks surrounded by the loops over theidistion is inferior, especially when the number of PEs is a prime nerfnb
blocks. Next, we go through the NavP steps to parallelize.Aapl Finally, if we employ data redistribution in tHBOALL approach,
particular, we first make the sweeps two DSCs and turn the oute €Ven though thze two sweeps are fully parallel, the cost af dat
loop another DSC responsible for injecting the sweeper DS@s distribution,0(N*), is so large that the overall performance is poor.
then cut the sweeper DSCs into shorter ones and pipeline. them Y used the MPI library calfPI_Alltoall() to obtain the cost

These steps are illustrated using the simple example pessém for matrix redistribution.
Section 2, we therefore skip the details here. With this example of ADI, we are able to demonstrate the follo

Figure 16 depicts two different block cyclic patterns — HP#E a ing: (1) We can solve both alignment and distribution, which are
our own NavP — in 1D and 2D cases. Each box in this figure solved in separate steps in earlier work, in a unified mar{@gt,he

represents a submatrix block and the number in a box indichée data distribution for NavP is obtained from minimizing trestof
ID of the PE that this block is assigned to. It is assumed thati COmmunication with load balancing as a constraint. Pdisife

the 1D case we have two PEs and in the 2D case we have four!S €Xploited later using mobile pipelines. The HPF stylecklo
PEs. As in Fig. 8, the three square matrices are each of drdar cyclic data distribution helps to improve parallelism byking the
Fig. 16(a), a matrix is cut into four vertical slices eachiot N/4 PEs busy earlier, and NavP block cyclic data distributiohjcly
and the blocks are assigned to the two PEs in a block fasttian (t IS Novel from this paper, enables the NavP program to acliigie

is, the first two blocks go to PE1 and the last two blocks go ta)PE Parallelism; and3) On loosely coupled systems such as clusters,
Figure 16(b) depicts a 1D block cyclic pattern where the kdcare data redistribution between the two phases, aimed at anpiévl
assigned to the PEs in order until the PEs are exhaustivelg,us DOALL parallelism for both phases, is prohibitively expensive.aA

at which time the block assignment cycles back. In HPF [32], a esult, choosing a data distribution that minimizes comication
2D block cyclic pattern is the cross product of two 1D blockliy and further minimizing communication using DSCs that foikhe

patterns, shown in Fig. 16(c). For 2D, each submatrix black i principle of pivot-computes are of decisive importance verall

N/4 x N/4. We develop our NavP block cyclic pattern, depicted *we use a true 2D processor grid for the HPF block cyclic patter
in Fig. 16(d), in which the first row of blocks are assignedfio a whenever possible.

performance. Using pipelining may result in loss of someeeg@f
parallelism, but this impact to performance is secondacyther-
more, with careful adjustment in data distribution using NavP
cyclic pattern, it is still possible to achieve full pardiéen using
mobile pipelines at a cost of asymptotically less commuitoa
than what is required in theOALL approach.

6.3 Crout factorization

Performance of Crout factorization
12 ‘ ‘

linear speedup -7
- #- -3,120x3,120 matrix }
—A- -5,040x5,040 matrix
——6,960x6,960 matrix

10 +—

Speedup
(2]

1 2 4 6 8
Number of PEs

10 12

Figure 18: The performance of Crout factorization.

Crout factorization has the data access pattern similduetsim-
ple example presented in Section 2, except that the prolsemw
2D. We initially use the data distribution depicted in Fig(4) and
program our DSC thread to compute following the large-sidata
like shown in Fig. 2. The difference is that the DSC now carae
column (entries on and above the diagonal line) of the 2D imatr
rather than an entry of the 1D array. The DPC is obtained in the
same way as described in Section 2 and block cyclic data-distr
bution (using a block of columns as a distribution unit) iediso
adjust the performance of the code as described in Sectidkes.
omit the details of implementation due to a space limitatioal
present the performance in Fig. 18.

7. CONCLUSIONS

This paper makes the following contributions:

e We present a new mathematical representation, cabed
gational trace graph(NTG), for representing the alignment
and distribution preferences in a program at the level of DSV
data entries in a unified manner. The NTG for a program
is obtained by running the program against a small problem

size. In a NTG, the nodes are the data entries of DSVs, the

load balancing are achieved by using block cyclic dataielistr
bution and mobile pipelining.

e We propose for the first time to use a graph partitioning tool
as a general strategy to obtain a data distribution fromergiv
NTG (for regular applications). Both alignment and distrib
tion are solved very efficiently at the same time. Let there be
K processors. To find a data distribution for a DSC program,
we will find a K-way partition of the corresponding NTG.
The objective is to find such a data distribution by minimiz-
ing the cost of communication, with a balanced (data) load as
the constraint. For DPC, a cyclic data distribution in therfo
of an(nK)-way partition will be found, where can be turned
by performance analysis. By using block cyclic distribngp
we can also make the tradeoffs between the communication
cost and exploitable parallelism in a program.

e We create a NavP distribution pattern, effectively a skewed
block data distribution, that allows us to exploit full para
lelism without redistributing large amount of data as reegi
by theDOALL approach. This pattern is novel and is uniquely
suited for mobile pipelines to our best knowledge;

e Our partitioning tool can find unstructured data layoutshsuc
as the L-shaped blocks. It is able to do this because it aligns
entries rather than dimensions of the arrays and thus eaptur
more accurately the cost of data communication;

e Our approach is independent of array storage schemes used.

We can hence help the programs that use sparse storage scheme

e \We present experimental results to show the effectiverfess o
our technique in three representative scientific appboati

Our future work includes extending this approach to large pr
grams with multiple phases, developing an efficient algarito
automatically recognize and capture the data distribypiatterns
in a givenK-partition that human beings can recognize, and devis-
ing new language constructs that allow our programmerspcess
layouts that do not exist in other approaches.

8. REFERENCES

[1] Jennifer M. Anderson, Saman P. Amarasinghe, and Monita®.
Data and computation transformations for multiprocesdarBroc.
5th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP’'9%ages 166—-178, Santa Barbara,
California, 1995.

[2] Jennifer M. Anderson and Monica S. Lam. Global optimizas for
parallelism and locality on scalable parallel machine®RWLDI '93:
Proceedings of the ACM SIGPLAN 1993 conference on
Programming language design and implementatjpeges 112-125,
New York, NY, USA, 1993. ACM Press.

edges (classified as producer-consumer (PC) edges for de- 3] jennifers M. Andersomutomatic Computation and Data

pendences, continuity (C) edges for thread hops and lgcalit
(L) edges for layout regularity) represent the affinity rela

tions between data entries, and the edge weights represent [4]

the relative importance of these affinity relations.

One fundamental difference between NTGs and some previ-

ous representations such as communication-paralleliaphgr
(CPGs) [8] is that our NTGs do not impose explicit con-
straints for preserving ahOALL parallelism in the original
program. However, our NTGs do not hinder parallelism be-

cause we carefully choose the weights of the edges such that
the PC edges, which represent true dependency in the algo- [6]

rithm, are infinitely heavier than the C edges, which are from
artificial sequencing of the program. More parallelism and

10

Decomposition for Multiprocessar®hD thesis, Stanford University,
Mar. 1997.

David Callahan, Bradford L. Chamberlain, and Hans P.&Ziithe
Cascade high productivity language.dth International Workshop
on High-Level Parallel Programming Models and Supportive
Environments (HIPS 2004pages 5260, 2004.

Philippe Charles, Christopher Donawa, Kemal Ebcio@hristian
Grothoff, Allan Kielstra, Vivek Sarkar, and Christoph VoraBn.
X10: An object-oriented approach to non-uniform clustempating.
In Proceedings of the 20th ACM SIGPLAN conference on
Object-oriented programing, systems, languages, andeatfing
pages 519-538. ACM SIGPLAN, 2005.

Department of Computer Science, University of Califasrirvine,
Irvine, Calif. MESSENGERS User’s Manual (Version 1.2.05 Beta)
May 2005.

(5]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Jordi Garcia, Eduard Ayguade, and Jesus Labarta. Dyndaia
distribution with control flow analysis. IRroceedings of
supercomputing’961996.

Jordi Garcia, Eduard Ayguadé, and JesUs Labarta. dreork for
integrating data alignment, distribution, and redistiiiu in
distributed memory multiprocessot&EE Trans. Parallel Distrib.
Syst, 12(4):416-431, 2001.

Gene H. Golub and Charles F. Van Loamatrix Computations
Johns Hopkins University Press, Baltimore, Md., third iedit 1996.
Sergei Gorlatch. Send-receive considered harmfulthgland
realities of message passifgCM Transactions on Programming
Languages and Systen®6(1):47-56, January 2004.

M. Gupta and P. Banerjee. Demonstration of automatia da
partitioning techniques for parallelizing compilers on
multicomputersIEEE Trans. Parallel Distrib. Syst3(2):179-193,
1992.

C. H. Huang and P. Sadayappan. Communication-freerpigre
partitioning of nested loopd. of Parallel and Distributed
Computing 19(5):90-102, 1993.

Thomas J. R. Hughe3he Finite Element Method : Linear Static and
Dynamic Finite Element AnalysiBrentice Hall, Englewood Cliffs,
N.J., 1987.

L. V. Kale and Sanjeev Krishnan. CHARM++: Parallel pragiming
with Message-Driven Objects. In Gregory V. Wilson and Paul L
editors,Parallel programming using C++pages 175-213. MIT
Press, 1996.

George Karypis and Vipin KumahMEeTIS A hypergraph
partitioning package (version 1.5.3pepartment of Computer
Science & Engineering, University of Minnesota, Minneamd/IN
55455, 1998.

Ken Kennedy and Ulrich Kremer. Automatic data layout fo
distributed-memory machineBCM Transactions on Programming
Languages and Systen#9(4):869-916, July 1998.

J. Knoop and E. Mehofer. Distribution assignment ptaest:
Effective optimization of redistribution cost&£EE Transactions on
Parallel and Distributed System&3(6):628 — 647, June 2002.
Peizong Lee and Zvi Meir Kedem. Automatic data and corafn
decomposition on distributed memory parallel computaGM
Transactions on Programming Languages and Systé#(4):1-50,
January 2002.

Claudia LeopoldParallel and Distributed Computing: A Survey of
Models, Paradigms, and Approachdshn Wiley & Sons, New York,
2001.

Jingke Li and Marina Chen. The data alignment phase inpiting
programs for distributed-memory machin@sParallel Distrib.
Comput, 13(2):213-221, 1991.

Angeles Navarro, Emilio Zapata, and David Padua. Céenpi
techniques for the distribution of data and computatl&EE Trans.
Parallel Distrib. Syst. 14(6):545-562, 2003.

Daniel J. Palermo and Prithviraj Banerjee. Automaélestion of
dynamic data partitioning schemes for distributed-memory
multicomputers. ILLCPC '95: Proceedings of the 8th International
Workshop on Languages and Compilers for Parallel Computing
pages 392-406, London, UK, 1996. Springer-Verlag.

Daniel J. Palermo, IV Eugene W. Hodges, and Prithviran&jee.
Interprocedural array redistribution data-flow analybid. CPC '96:
Proceedings of the 9th International Workshop on Languayes
Compilers for Parallel Computingpages 435-449, London, UK,
1996. Springer-Verlag.

Lei Pan, Lubomir F. Bic, and Michael B. Dillencourt. Bibuted
sequential computing using mobile code: Moving computet®
data. In Lionel M. Ni and Mateo Valero, editoBroceedings of the
2001 International Conference on Parallel Processing (RCF001)
pages 77-84, Los Alamitos, Calif., September 2001. IEEE (@der
Society.

Lei Pan, Lubomir F. Bic, Michael B. Dillencourt, and MjrKin Lai.
Mobile agents — the right vehicle for distributed sequéntia
computing. In Sartaj Sahni, Viktor K. Prasanna, and Udayk&hu
editors,Proceedings, 9th International Conference on High
Performance Computing - HIPC 2002lume 2552 ot.ecture Notes
in Computer Sciencgages 575-584, Berlin, Germany, December

11

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

2002. Springer-Verlag.

Lei Pan, Lubomir F. Bic, Michael B. Dillencourt, and MjrKin Lai.
From distributed sequential computing to distributed fielra
computing. In C. Huang and J. Ramanujam, editBreceedings of
the 2003 ICPP Workshop on High Performance Scientific and
Engineering Computing with Applications (HPSECA-(®ges
255-262, Los Alamitos, Calif., October 2003. IEEE Computer
Society.

Lei Pan, Lubomir F. Bic, Michael B. Dillencourt, and MjrKin Lai.
NavP versus SPMD: Two views of distributed computation. In
Teofilo Gonzalez, editoRroceedings of the Fifteenth IASTED
International Conference on Parallel and Distributed Cartipg and
Systemsvolume 2, Algorithms, pages 666—673, Anaheim, Calif.,
November 2003. ACTA Press.

Lei Pan, Ming Kin Lai, Michael B. Dillencourt, and Lubdnt. Bic.
Mobile pipelines: Parallelizing left-looking algorithmusing
navigational programming. IRroceedings, 12th International
Conference on High Performance Computing - HIPC 2Q0&tcture
Notes in Computer Science, Berlin, Germany, December 2005.
Springer-Verlag.

Lei Pan, Ming Kin Lai, Koji Noguchi, Javid J. Huseynowibhomir
Bic, and Michael B. Dillencourt. Distributed parallel comtfmg
using navigational programmingnternational Journal of Parallel
Programming 32(1):1-37, February 2004.

Lei Pan, Wenhui Zhang, Arthur Asuncion, Ming Kin Lai, thiael B.
Dillencourt, and Lubomir Bic. Incremental parallelizatiosing
navigational programming: A case study.Rroceedings of the 2005
International Conference on Parallel Processing (ICPP 2p@ages
611-620, Oslo, Norway, June 2005.

Rolf Rabenseifner and Gerhard Wellein. Comparisonasélpel
programming models on clusters of SMP nodes. In H.G. Bock,
E. Kostina, H.X. Phu, and R. Rannacher, edittmdyiodelling,
Simulation and Optimization of Complex Processes (Prdngsdf
the International Conference on High Performance Scientifi
Computing, March 10-14, 2003, Hanoi, Vietnampages 409-426.
Springer, 2004.

Robert S. Schreiber. An introduction to HRFecture Notes in
Computer Sciencel132:27-44, 1996.

Thomas J. Sheffler, Robert Schreiber, William PughnJghGilbert,
and Siddhartha Chatterjee. Efficient distribution analysa graph
contraction. InLCPC '95: Proceedings of the 8th International
Workshop on Languages and Compilers for Parallel Computing
pages 377-391, London, UK, 1996. Springer-Verlag.

Jeffrey M. Squyres and Andrew Lumsdaine. A component
architecture for LAM/MPI. In Jack Dongarra, Domenico Lafora,
and Salvatore Orlando, editoRroceedings, 10th European
PVM/MPI Users’ Group Meetingvolume 2840 of_ecture Notes in
Computer Sciencgages 379-387, Berlin, Germany, October 2003.
Springer-Verlag.

